"This site requires JavaScript to work correctly"

Prof. Dr. Raimund Brotsack, Dipl.-chem.

  • Renewable Energies
  • Energy storage
  • Power to Gas with methanization
  • Bio-hydrogen
  • Methane-pyrolysis

Professor

Head of Industrial Engineering; Head of Chemistry Laboratory ECRI, Head of reserach team “Green Gases” at the Technology Center Energy (Cooperation THD with HAW Landshut: https://www.haw-landshut.de/forschungseinrichtungen/technologiezentren/technologiezentrum-energie/labore/labor-fuer-gruene-gase) Promotionsverbundkolleg Life Science and Green technologies - Member of the Management Board (https://life-sciences.baywiss.de/)


Sortierung:
Journal article
  • D. Martens
  • K. Balta-Brouma
  • Raimund Brotsack
  • B. Michalke
  • P. Schramel
  • C. Klimm
  • B. Henkelmann
  • K. Oxynos
  • K.-W. Schramm
  • E. Diamadopoulos
  • A. Kettrup

Chemical impact of uncontrolled solid waste combustion to the vicinity of the kouroupitos ravine, Crete, Greece.

In: Chemosphere vol. 36 pg. 2855-2866

  • (1998)

DOI: 10.1016/s0045-6535(97)10242-9

Journal article
  • J. Maguhn
  • A. Wimschneider
  • Raimund Brotsack
  • P. Spitzauer
  • D. Freitag
  • A. Kettrup

Immissionsbelastungen im Umfeld des Flughafens München.

In: Umweltwissenschaften und Schadstoff-Forschung - Zeitschrift für Umweltchemie und Ökotoxikologie vol. 12 pg. 259-268

  • (2000)

DOI: 10.1065/uwsf2000.08.029

Die Immissionsbelastung im östlichen Umland des neuen Münchner Flughafens wurde im Zeitraum von 1992 bis 1995 mit Hilfe einer Reihe unterschiedlicher Messmethoden untersucht. Für die wirkungsbezogene Erfassung von Umwelteinflüssen wurden Bioindikatoren zur Bestimmung der PAK-Belastung und zur Quantifizierung der Photooxidantienbelastung eingesetzt. Darüber hinaus wurde der PAK-Gehalt des Oberbodens bestimmt. Die aktuelle Luftbelastungssituation wurde während photochemisch aktiver Wetterlagen im Sommer im Rahmen von 7 Intensivmesskampagnen untersucht. Die Bodenbelastung mit PAK liegt im Bereich der für ländliche Regionen typischen Hintergrundwerte mit den höchsten Konzentrationen in der Nähe stark befahrener Straßen und weist keinen zeitlichen Trend auf. Auch der aktuelle PAK-Eintrag liegt an allen Standorten in einem für ländliche Regionen in Bayern typischen Bereich. Als Hauptemittent wird im Sommer der Kfz-Verkehr identifiziert, während die deutlich erhöhte Belastung im Winter auf den Hausbrand zurückgeführt werden kann. Die Photooxidantien-belastung zeigt im Flughafenumland keine ausgeprägten Unterschiede, sie ist an den durch Straßenverkehr beeinflussten Standorten jedoch am geringsten. Die Konzentrationen leicht flüchtiger Kohlenwasserstoffe sind an einer verkehrsreichen Straßenkreuzung in Erding deutlich höher als im ländlichen Flughafenumland. Sie zeigen ausgeprägte Tagesgänge, die u.a. auf den luftchemischen Abbau zurückzuführen sind. Die Hydroperoxide als sekundäre Luftschadstoffe weisen einen gegensätzlichen Verlauf auf, der dem des Ozons mit nachmittäglichem Maximum ähnelt.
Patent
  • Raimund Brotsack
  • J. Pettrak

Mikrobiologische Biomethan-Erzeugung mit Wasserstoff aus der thermischen Vergasung von kohlenstoffhaltigen Einsatzstoffen.

  • 21.11.2012 (2014)
Contribution
  • K. Edelmann
  • S. Schenk
  • H. Röder
  • Raimund Brotsack
  • W. Mayer

Energy balance, mass balance analysis and econometric modelling of a biological-fermentative power-to-gas process. Poster presentation.

In: 2nd International Conference on Renewable Energy Gas Technology (REGATEC). pg. 147-148

  • (2015)

Lecture
  • Raimund Brotsack
  • Y. Gmach
  • J. Meyer
  • M. Wolff

Mikrobielle Biomethan-Erzeugung mit Wasserstoff aus der thermischen Vergasung von Biomasse mit Nährstoffen aus Vergasungsrückständen (Ash-to-Gas). Vortrag und Posterpräsentation.

In: Forschungskolloquium Bioenergie

Ostbayerisches Technologie-Transfer-Institut e. V. (OTTI) Regensburg Straubing

  • 11.-12.02.2015 (2015)
Lecture
  • M. Kohlmayer
  • Raimund Brotsack

Syn-Bio-Gas: Biomassevergasung als regelbare Nährstoffquelle für den Prozess der mikrobiologischen Methanisierung im Rahmen der Power-to-Gas -Technologie.

In: 2. Tag der Forschung der THD 2015

Technische Hochschule Deggendorf Deggendorf

  • 05.03.2015
Lecture
  • S. Schenk
  • K. Edelmann
  • H. Röder
  • Raimund Brotsack
  • W. Mayer

Energy Balance, Mass Balance Analysis and Econometric Modelling of a Biological-Fermentative Power to Gas Process. Poster presentation.

In: 9th International Renewable Energy Storage Conference / Energy Storage Europe

Köln

  • 15.-17.03.2015 (2015)
Lecture
  • M. Wolff
  • Raimund Brotsack
  • J. Karl

Allothermal Steam Gasification with Biological Methanation: Bio Methane From Lignocellulosic Feedstock (Presentation and Publication).

In: 23rd European Biomass Conference & Exhibition

Vienna, Austria

  • 01.-04.06.2015 (2015)
Journal article
  • Florian Karl
  • Roland Zink
  • Raimund Brotsack
  • Y. Gmach
  • K. Seebauer

Spatio-temporal Modelling of Electrical Supply Systems to Optimize the Site Planning Process for Renewable Energies – The Case Study Power-to-Mobility.

In: Energy Procedia vol. 97 pg. 92-99

  • (2016)

DOI: 10.1016/j.egypro.2016.10.027

The energy-transformation towards renewable energies requires also storage systems to ensure security of supply. Motivated by strategies to implement renewables up to 100% at a regional scale, this paper presents a simulation of the power production from a virtual power plant based on 13 photovoltaic plants to integrate the “Power-to-Mobility”-technology, an innovative storage-technology to compensate fluctuating power production. The aim is to develop a simulation methodology with spatial-temporal and electrical parameters for a better management of the storage system. The project is work in progress but first results of the simulation show synergies between virtual power plants and Power-to-Mobility.
Contribution
  • Florian Karl
  • Roland Zink
  • Raimund Brotsack

Dezentralisierung des Energiesystems als Herausforderung für die raumzeitliche Integration von Power-to-Mobility-Anlagen. Ein Konzeptentwurf.

In: Forum Econogy 2016. Energiewende: Strategien sind gefragt (Energieinstitut an der Johannes Kepler Universität Linz; 22.09.2016) pg. 159-175

  • Eds.:
  • H. Steinmüller
  • F. Schneider

Trauner Verlag Linz, Österreich

  • (2017)
Contribution
  • K. Seebauer
  • J. Gleich
  • Raimund Brotsack
  • G. Weinzierl
  • J. Huber

Power-to-Gas – eine Möglichkeit zur CO2-neutralen Energieversorgung von Quartieren.

In: RET.Con 2018. Tagungsband: 1. Regenerative Energietechnik-Konferenz. pg. 126

Thüringer Universitäts- und Landesbibliothek Jena

  • (2018)

DOI: 10.22032/DBT.45830

InternetDocument
  • M. Kohlmayer
  • R. Huber
  • Raimund Brotsack
  • W. Mayer

Simultaneous CO2 and CO methanation using microbes.

bioRxiv

  • (2018)

DOI: 10.1101/326561

In this study, we developed a method for simultaneous bio-methanation of CO 2 and CO with H 2 in a single bioreactor using a combination of carboxydotrophic bacteria and methanogenic archaea for industrial applications. Methanogenic archaea generally use H 2 and CO 2 to produce methane, whereas very few methanogenic archaea methanize CO, and these grow slowly and consequently produce low reactant gas turnover rates. Thus, to achieve fast and simultaneous transformation of CO and CO 2 , we identified a combination of carboxydotrophic and hydrogenogenic bacteria and methanogenic archaea that can produce H 2 and CO 2 from CO, and then methanize CO 2 and H 2 . The present screening experiments identified carboxydotrophic bacteria and methanogenic archaea that can cohabitate at the same thermophilic temperature and pH ranges and in the same growth medium. In these experiments, combinations of Carboxydocella thermautotrophica (DSM 12326), Carboxydocella sporoproducens (DSM 16521), and three thermophilic rod-shaped methanogenic archaeal cultures from MicroPyros GmbH formed unique microbial co-cultures that transformed CO 2 , H 2 , and CO to methane. The successful combination of these microbes could be used to gasify biowastes, such as sewage sludge, as alternative sources of hydrogen for microbial power-to-gas processes. Accordingly, gasification under these conditions produced H 2 -rich gas containing CO 2 and CO, theoretically allowing various types of biowastes to be converted to biomethane, which is CO 2 -neutral, storable, and widely applicable as an energy source.
Lecture
  • Bernhard Bleyer
  • Jennifer Huber
  • Raimund Brotsack
  • Herbert Fischer
  • Anna Marquardt
  • Christian Rester
  • Roland Zink

Bildung für nachhaltige Entwicklung an der Technischen Hochschule Deggendorf. Posterpräsentation.

In: Netzwerktreffen Hochschule und Nachhaltigkeit Bayern im Bayerischen Staatsministerium für Umwelt und Verbraucherschutz (StMUV) zum Thema "Bildung für nachhaltige Entwicklung - Wie kann die Implementierung gelingen?"

München

  • 16.07.2018 (2018)
Journal article
  • M. Thema
  • T. Weidlich
  • M. Hörl
  • A. Bellack
  • F. Mörs
  • F. Hackl
  • M. Kohlmayer
  • J. Gleich
  • C. Stabenau
  • T. Trabold
  • M. Neubert
  • F. Ortloff
  • Raimund Brotsack
  • D. Schmack
  • H. Huber
  • D. Hafenbradl
  • J. Karl
  • M. Sterner

Biological CO2-Methanation: An Approach to Standardization.

In: Energies vol. 12 pg. 1670

  • (2019)

DOI: 10.3390/en12091670

Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes.
Lecture
  • Robert Bauer
  • Raimund Brotsack

Optimization analysis of biological power-to-methane with Matlab/Simulink.

In: V. International Conference on Monitoring & Process Control of Anaerobic Digestion Processes (CMP)

Online

  • 23.03.2021 (2021)
Lecture
  • Raimund Brotsack

LTM - Labor und Technikum für mikrobiologische Methanisierung am TZE.

In: Besuch von Florian Pronold, Staatssekretär im Bundesumweltministerium

Technologiezentrum Energie Ruhstorf an der Rott

  • 16.07.2021 (2021)
Lecture
  • Raimund Brotsack
  • S. Schneller
  • T. Bieringer

Mixed cultures of natural microorganism for stable and efficient microbial methanation.

In: 7th International Conference on Renewable Energy Gas Technology (REGATEC)

Weimar

  • 20.-21.09.2021 (2021)

Journal article
  • Robert Bauer
  • Dominik Schopf
  • Grégoire Klaus
  • Raimund Brotsack
  • Javier Valdes

Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria.

In: Energies vol. 15 pg. 2640

  • (2022)

DOI: 10.3390/en15072640

In this study, the possibility of sector coupling with biological Power-to-Methane to support and stabilize the energy transition of the three major sectors of electricity, heat, and gas was addressed. For this purpose, the energy cell simulation methodology and the Calliope tool were utilized for energy system optimization. This combination provides detailed insights into the existing dependencies of consumers and fossil and renewable energy suppliers on a local scale. In this context, Power-to-Methane represents an efficient technology for quickly and effectively exploiting unused electricity potential for various sectors and consumers. It was found that, even in regions with low wind levels, this surplus electricity potential already exists and depends on various influencing factors in very different ways. The solar influence on these potentials was considered in connection with gas-fired cogeneration plants for district heating. It was found that the current heat demand for district heating produces a large amount of electricity and can generate surplus electricity in the winter. However, in the summer, large amounts of usable waste heat are dissipated into the environment, owing to the low consumption of district heat. This problem in the heat sector could be reduced by the expansion of photovoltaics, but this would require further expansion of storage or conversion systems in the electricity sector. This demonstrates that the consideration of several sectors is necessary to reflect the complexity of the sector coupling with Power-to-Methane properly.
Lecture
  • Raimund Brotsack

Potentials for Green Gas from Biomass and Renewable. An Essential Pillar for Sustainable Energy Systems Energies.

In: EnergInno Brazil 2022

Sao Paulo, Brazil

  • 10.05.2022 (2022)
Lecture
  • Raimund Brotsack

Grüne Gase - Eine essentielle Säule nachhaltiger Energiesysteme.

In: Landshuter Energiegespräche

Hochschule Landshut Landshut

  • 16.05.2022 (2022)
Lecture
  • G. DeFeo
  • Raimund Brotsack
  • L. Senatori

Biomethanation: a keystone for new energy solutions.

In: 8th International Conference on Renewable Energy Gas Technology (REGATEC)

Malmö, Sweden

  • 17.-18.05.2022 (2022)

Lecture
  • Raimund Brotsack

Potentials for Green - Hydrogen from Biomass.

In: RLS Workshop

Herrsching am Ammersee

  • 20.09.2022 (2022)
Lecture
  • Raimund Brotsack

Wasserstoff (H2) - eine essentielle Säule der Energiesysteme.

In: HyPaLa - Clean Mobility im Passauer Land - Auftaktworkshop

Passau

  • 22.10.2022 (2022)
Lecture
  • Robert Bauer
  • Grégoire Klaus
  • Raimund Brotsack
  • Javier Valdes

Biomethanation: A keystone for new energy solutions.

In: Ecomondo - International trade fair for material and energy

Rimini, Italy

  • 07.-11.11.2022 (2022)
Lecture
  • Raimund Brotsack

Potentials from Green Gas from Biomass and Renewable Energies.

In: DanuP-2-Gas Final Conference

Budapest, Hungary

  • 11.11.2022 (2022)
Lecture
  • Robert Bauer
  • Grégoire Klaus
  • Raimund Brotsack
  • Javier Valdes

Power-to-Methane: the technology for sector coupling.

In: Energytech - 4th International Conference on Renewable Energy, Resources & Sustainable Technologies

Rome, Italy

  • 14.-15.11.2022 (2022)
Lecture
  • Raimund Brotsack

Potentials for Green Gas from Biomass and Renewable Energies.

Université du Québec à Trois-Rivières Trois-Rivières, Québec, Canada

  • 28.11.2022
Contribution
  • A. Heindel
  • Wolfgang Dorner
  • Rajan Paudyal
  • Laura Fiegler
  • Raimund Brotsack

Modelling Resource Availability for Power-to-Gas Infrastructure – A Case Study in the Danube Basin.

In: 2023 13th International Conference on Advanced Computer Information Technologies (ACIT). pg. 512-516

IEEE

  • (2023)

DOI: 10.1109/ACIT58437.2023.10275558

Journal article
  • M. Mock
  • R. Ochi
  • M. Bieringer
  • T. Bieringer
  • Raimund Brotsack
  • S. Leyer

Comparison of Various Reducing Agents for Methane Production by Methanothermobacter marburgensis.

In: Microorganisms vol. 11

  • 10.10.2023 (2023)

DOI: 10.3390/microorganisms11102533

Biological methanation is driven by anaerobic methanogenic archaea, cultivated in different media, which consist of multiple macro and micro nutrients. In addition, a reducing agent is needed to lower the oxidation-reduction potential (ORP) and enable the growth of oxygen-sensitive organisms. Until now, sodium sulfide (Na2S) has been used mainly for this purpose based on earlier published articles at the beginning of anaerobic microbiology research. In a continuation of earlier investigations, in this study, the usage of alternative reducing agents like sodium dithionite (Na2S2O4) and L-Cysteine-HCl shows that similar results can be obtained with fewer environmental and hazardous impacts. Therefore, a newly developed comparison method was used for the cultivation of Methanothermobacter marburgensis. The median methane evolution rate (MER) for the alternatives was similar compared to Na2S at different concentrations (0.5, 0.25 and 0.1 g/L). However, the use of 0.25 g/L Na2S2O4 or 0.1 g/L L-Cys-HCl led to stable MER values over consecutive batches compared to Na2S. It was also shown that a lower concentration of reducing agent leads to a higher MER. In conclusion, Na2S2O4 or L-Cys-HCl can be used as a non-corrosive and non-toxic reducing agent for ex situ biological methanation. Economically, Na2S2O4 is cheaper, which is particularly interesting for scale-up purposes.
Lecture
  • Raimund Brotsack

Power to Gas - Eine Säule künftiger Energiesysteme.

Kreiswerke Cham Cham

  • 02.02.2023 (2023)
Lecture
  • Raimund Brotsack

Grüne Gase - eine essentielle Säule nachhaltiger Energiesysteme.

Rotary Club Cham Cham

  • 28.02.2023 (2023)
Lecture
  • Raimund Brotsack

Erneuerbares Erdgas durch Power to Gas mit biologischer Methanisierung.

In: Ringvorlesung #StudyGreenEnergy

Hochschulnetzwerk #StudyGreenEnergy Online

  • 08.03.2023 (2023)
Lecture
  • A. Heindel
  • Raimund Brotsack

DanuP-2-Gas: Advancing the energy transition in the Danube Region through Power-to-Gas integration. Poster presentation.

In: 9th International Conference on Renewable Energy Gas Technology (REGATEC) 2023

Berlin

  • 15.-16.05.2023 (2023)
Lecture
  • Raimund Brotsack

Vorstellung der Arbeitsgruppe Grüne Gase (Kooperation TZE: Hochschule Landshut/THD).

In: 6th Methanantion Workshop

Friedrich-Alexander-Universität Erlangen-Nürnberg Nürnberg

  • 02.06.2023 (2023)

projects

DanuP-2-Gas (https://danup2gas.eu/info/project)


labs

Labor chemistry ECRI / Laboratory and pilot plant for microbiological methanisation at the Technology Centre Energy


core competencies

Energy storage

  • Power to Gas
  • biological methanisation
  • bio-hydrogen